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Abstract. Reaction equations of homogeneously mixed pollutants in the atmosphere can lead
to non-stationary periodic solutions. It is important to know how these solutions are modified
under the influence of the atmospheric currents. We investigate this question in a very simple one-
dimensional model: the reactions are modelled by the brusselator and the currents are represented
by a uniform stream with periodic boundary conditions. In the limit of strong currents we again find
the homogeneous solutions whereas for weaker currents complicated spatial and temporal patterns
emerge. The role of diffusion is also investigated.

1. Introduction

The concentrations of chemical species (e.g. pollutants) in the atmosphere depend on the
atmospheric currents and the chemical reactions. Neglecting cloud formation, humidity, ice
etc, the governing equation for the concentration fields can be written

a
Eci=fi(cl...cn,w,t)—v(:c,t)-Vci+eiAc,- i=1...,n (1)

where the functiong; describe the chemical reactions and sources, the second term on the
right-hand side represents the advection by the atmospheric cusiants and the last one
is the diffusion term.

If the mixing is strong and the chemical components are homogeneously distributed the
concentrations; are determined by the chemical reactions alone and the equations reduce to
ordinary reaction rate equations. The solutions of these reaction equations need not approach
a time-independent limit. They can develogleemical dynamicsvell known from model
reaction schemes and laboratory experiments [1]. Periodic fluctuations can also arise in
atmospheric chemistry as has recently been shown in a model system containing six pollutants
and two pollutant sources [2—4]. A particular feature was the result that concentrations may
change by an order of magnitude within a few days.

If the chemical components are not homogeneously distributettahsport dynamics
needs also to be considered. In the atmosphere the transport of chemical species is dominated
by advection and molecular diffusivities are very small. But the advecting velocity field can
be decomposed into large-scale winds and a strongly fluctuating small-scale component. The
effect of the latter component on the chemical fields is often described by a ‘turbulent’ diffusion
[5-8] with diffusivity parameters much higher than the molecular ones.
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In this context two questions arise: first, how do the concentrations develop if the transport
dynamics is not negligible? We show here, for a very simple model, that the transport dynamics
can lead to very rich new phenomena. Second, what is the effect of the diffusion term? We
will show in the same model that if there ischemical dynamicshen the diffusion is a
singular perturbation. It has its own timescales that depend sensitively on the strength of the
diffusion term.

Previous work has investigated the interaction between fluid transport and chemical
dynamics for reactions likd + B — C or A + B — 2B in two-dimensional flows [9-12].

Here we consider a simple one-dimensional flow with a set of reactions that allows for time-
dependent chemical dynamics in the homogeneous case. The model is described in section 2,
in section 3 we discuss its properties without diffusion and in section 4 we concentrate on the
role of diffusion. The conclusion ends the paper.

2. The model

The chemical dynamics of our model is described by the well known Brusselator reaction
scheme [13]

X > E X—>Y 2X+Y — 3X (2)

where the pollutank partly decays into an inert substani¢gpartly into a second constituent
that autocatalytically reacts witki again. For maintaining the chemical reactions a ‘pollutant
source’ is required pouring out pollutants of tyfie

Inthe absence of transport and if the pollutant source is spatially uniform the concentrations
c1 (of X) andc; (of Y) are described by the chemical rate equationst

C.'X =S +C§Cy — (1 +b)CX C.'y = bCX — CiCY (3)

where S is the source strength aridrepresents the ratio between the decay rat& dfito
pollutantY and the decay rate df into inert substances. Depending on the parameters the
concentrations converge to a fixed point or limit cycle in the homogeneous case. Typically
periodic solutions with sharp peaks occur. They are analogous to those obtained in the
simplified tropospheric chemistry model of [2].

To investigate the interaction between the chemical and transport dynamics we consider a
point source producing pollutait that is transported away by a steady flow. If the diffusion
is weak the reactions will be mostly concentrated around the streamline containing the point
source. Assuming a closed streamline (e.g. around an isolated vortex) we consider a very
simple one-dimensional transport dynamics given by a uniform stream on the unit interval and
periodic boundary conditions. (By this we neglect the effects arising due to the curvature of
the steramline.) Thus, we obtain the following combined reaction transport equations:

] 92
—cx = S6(x) +C§,Cy — (A +b)cxy —v—cyxy te—cx
ot ax 9x2
2 (4)
9 bc c2c v 9 cy te 9 c
—Cy = — —_V— R
A S T R P~

where the source is located at= 0 and we assumed that the diffusivitiesare equal for
the two constituentst. Apart from the diffusion constant the equations contain three control
parameters, the decay ratipthe source strengthiand the velocity.

T The reaction rates and further down the length of the streamline have been scaled to unity by proper rescaling of
length, time and concentrations.

¥ In a wind field molecular diffusion is negligible compared with turbulent diffusion. In that eésequal for all
constituents. In our paper smalmeans small turbulent diffusion.
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Figure 1. Curves corresponding to the Hopf bifurcation in the parameter ptahéor different
values of the period'.

3. Properties of the model without diffusion

Let us now assume that diffusion is weak and it can be negleeted Q). In this case
it is convenient to introduce a reference frame co-moving with the flow using a coordinate
transformationt = x — vrmod 1. In the moving frame equation (4) reduces to an infinite
set of uncoupled pairs of ordinary differential equations, each pair describing the chemical
dynamics in individual fluid parcels labelled by their initial coordineget times = O:

o0

cL=s Z 8(x0+vt+n)+c§cz—(1+b)cl 5)
n=—oo

¢ = bcy — cfcz.

In the moving frame the point source is moving with a veloaitand the above equation
describes a periodically driven (kicked) chemical dynamics with a driving pdries 1/v.
Note that the phase of the driving depends on the paramg(@r < xo < 1) being different
for each fluid parcel.

The periodically driven brusselator has been investigated in different contexts considering
a constant plus a sinusoidal or delta-function time dependence of the source [14-16]. In the
T — 0 limit the normal brusselator is recovered, i.e. very frequent injections correspond to
an almost uniform source. In this limit the parameter pléiversush can be divided into two
regions (figure 1): for higher source strengths the concentrations converge to the fixed point
c; =8,¢5=>b/S. AsS is decreased, the fixed point becomes unstable and a Hopf bifurcation
occurs along the curvé = +/b + 1 forming the boundary between the two regions. Below
this curve the system converges to a limit cycle, i.e. the concentrations oscillate periodically
(figure 2).

When the period’ is non-zero but still small (< T « 1), a periodic pulsation with
periodT of the concentrations appears. Moreover, the initially two-dimensional phase space
(c1 — ¢2) becomes three dimensional by including the cyclic varialplE mod 1 and the
attractors can be conveniently represented on a stroboscopic section defined by a fixed value
of the driving phase.

The dimensionality of the attractor increases as well, and the original fixed point turns to
a limit cycle with periodr’ that is a fixed point of the stroboscopic map. Similarly, the original
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Figure 2. Constant in time and periodic behaviour of the concentratigasidc, for the unforced
brusselator{ = 0). The parameters ase= 2.5,b = 3.0 ands = 1.0, » = 3.0, respectively.

limit cycle becomes either (i) a torus corresponding to a quasiperiodic time dependence of the
concentrations with one of the periods equal'tlfigure 3) or (ii) a periodic orbit with period
nT/m,(n,m=12,...).

This is expected from the characteristic features of periodically driven oscillators. There
exist resonant regions for driving frequencies close to their natural frequency multiplied by a
rational number. These resonant regions appear here in the parameter space below the Hopf
bifurcation curve and are analogous to the Arnold tongues of the so-called ‘circle map’ [17]
(figures 4 and 5). Another effect of the periodic forcing term is that the Hopf bifurcation
curve moves to smaller values ®BsT increases (figure 1). Since the dynamics is given by a
set of two non-autonomous ordinary differential equations chaotic behaviour is also possible
for certain values of the parameters leading to a strange attractor in the stroboscopic section
(figure 6).

Next we consider thepatial distributionof the concentrations in the case of different
temporal dynamics. The spatial dependence can be reconstructed from the temporal dynamics
by taking into account the phase shift of the driving for different fluid parcels and the possibly
different initial conditions.

() Periodic time dependence with peridd

This behaviour occurs for largg (i.e. small velocities of the flow). In this case the
concentrations oscillate and the phase of the oscillations is given by the phase of the driving
t/T mod 1. Thus the final state is independent of the initial conditions. In the moving frame
the only difference in the periodic time dependence at different points of the flow is a time lag
xT

c(x,t) =c(t+xT;xo=0) (6)
that corresponds to a non-uniform but time-independent distribution in the standing frame
c(x,t) =c(xT; xg =0).
(8) Periodic oscillations with period T .

This behaviour is characteristic to the resonant regions. The concentrations at each time
can take one of the possible values depending on the initial conditions

c(x,t) €{c(t+iT +xT; xo =0)} i=0,...,n—-1 )
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Figure 3. Quasiperiodic time dependence of the concentratigrendc;, (a), and stroboscopic
section b) fors = 1.0, = 3.0 andT = 1.0.

where the value of integeiis a function of the coordinatedue to its dependence on the initial
concentrations(x, ¢+ = 0). The boundary between the basins of attraction ofitheanches
of the solution is a twisted (Bbius-type) surface in the phase space, so that the basin of
attraction of branchbecomes the basin of attraction of bramehl modn after one period’.
Thus any smooth initial condition must have at least one intersection with this surface. At this
point the concentrations converge to two different branches and a discontinuity appears in the
spatial dependence of the concentrations (figure 7). Note that this jump is not a consequence
of the delta function in equation (5) but due to geometrical constraints. An initially random
distribution can lead to a completely staggered distribution whose envelopes ataémehes
of the solution. The jumps stay at fixed positions in the moving reference frame.

(y) Quasiperiodic time dependence

This is present below the Hopf bifurcation curve between the resonances and dominates
for smallT because with increasirigthe region below the Hopf curve shrinks and at the same
time the resonantislands grow in size. This case corresponds to a motion on atorus in the phase
space. The dynamics can be characterized by two cyclic angle-like variables, one of them is
the phase of the driving and the other one depends smoothly on the initial concentrations:
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Figure 4. Stroboscopic plot of; as function ofl" for s = 1.9 andb = 7.7. The Hopf bifurcation
occurs around” = 1.03 and there are resonant windows inside the quasiperiodic region labelled
by the ratio of the two periods.
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Figure 5. Periodic (blank) and quasiperiodic (grey) regions in a section of the parameter space
for T = 1.0. The behaviour of the system was identified by calculating the leading Lyapunov
exponent which is smaller than0.0025 for the blank region.

c(x,t) = c(t +1(X); xo = 0). Therefore, an initially smooth distribution remains smooth in
for all times (except at the initial position of the source where the time lag of the source term
by T leads to a discontinuity).

(8) Chaotic time dependence

In this case the time dependence is very sensitive to the initial conditions and thus the
distribution becomes irregular on each scale regardless how smooth the initial distribution
may have been (figure &)).

4. The role of diffusion

Without diffusion the final distributions (except those with the periby have infinite
degeneracy due to an arbitrary unevent number of jumps. Therefore diffusi@mnigudar

Tt We do not count the strong increase of theoncentration due to thifunction shape as a jump.
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Figure 6. Chaotic time dependence of the concentrationandc; and the stroboscopic section
of the strange attractor. The parameterssatel.2,b = 7.0 andT = 1.36.

perturbation that has significant consequences for the system even foresmglbr the
following computations we used the Crank—Nicholson scheme combined with operator
splitting [18].)

We discuss first the simplest nontrivial case of equation (7), which occurs for pdfiod 2
We denote with a-+ (+—) jump an ‘upward’ (‘"downward’) steep increase (decrease) of the
concentration, but exclude the strong increase af the location of the source. If the diffusion
is small enough we can treat a jump as isolated (for a very long time). We find that due to
diffusion the jumps move with a drift velocity relative to the flow, (cf figure 7). Scaling and
symmetry arguments suggest that this should be proportional to a higher poy/eraofd in
fact we find numerically a dependeneec. The important point, however, is that, averaged
over 2I', each isolated jump moves with tlsamedrift velocity. (In fact after timeT’ a —+
jump becomes a++ jump and vice versa.) What we expect then as the essential ingredient
of equation (7) is thayf tries to enforce solutions with a period of'2 In appendix A we
have derived a simple functiofi that has just this propertgnd makes it possible to treat
equation (7) analytically. We then find: first, for times

Ti = OQ) 8)
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Figure 7. Spatiotemporal plot of the concentratians(a) andcz (b) along the streamlines in the
co-moving frame represented on a greyscale, so that concentrations increase from black to white.
The simulation was started with both concentrations equal to zero and the initial position of the
source is att = 0.2. Parameters are= 1.0b = 5.0 and7 = 1.7Incase$) ¢ = 0O and a
non-moving discontinuity is present at= 0.2. When diffusion is switched oa = 0.001 the
discontinuity becomes rounded and moves (to the left in this case) along the streamline.

all jumps with distance of)(,/€) vanish. During this time the effect of the diffusion is just a
coarse graining. Second, over a period of about

T, = ePlVe B =0 )

all other jumps are affected. The diffusion gradually removes the degeneracies, until a final
state emerges that has no jumps at all, besides the generic one that cannot be removed. In
our model this state has global stability. Numerically we find the same phenomena for the
brusselator, cf figure Bj.

The effects described here occur quite independently of how grsalOn the other hand
T, depends exponentially ory I/e. When a further perturbation has to be added acting on a
timescaler we expect quite different situations depending on whetber t or 7, < t. This
means that the effect of such a perturbation depsedsitivelyon \/e.

We expect even more complicated properties of the concentrations having higher periods
(in absence of diffusion). There are two reasons: (i) if the periad’ishe system has at any
locationn — 1 choices for the height of a jump, (ii) the jumps are no longer equivalent but are
separated in classes and only jumps withinghmeclass change into each other and therefore
move with the same mean drift velocity. Indeed, the effect of diffusion on the periodic
solution can in some cases be very significant, leading to a complicated irregular behaviour of
the systemin space and time. As can be seenfrom figure 8, inside the chaotic concentration field
coherent regions with regular periodic time dependence appear and disappear continuously.
This kind of spatiotemporal intermittency has been observed in different extended systems
[19, 20]. Ifthe initial distribution is smooth first at least the intrinsic jump appears as described
above. The pertubation of the periodic solution around the discontinuity leads to a chaotic
time dependence which due to the diffusive coupling spreads over the whole system. Such
behaviour can be observed for parameters which lie in the vicinity of the chaotic regimes of
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Figure 8. Stroboscopic spatiotemporal plot of concentratigrior parameters = 0.8, = 6.0
andT = 1.85, corresponding to a periodic behaviour with peri@dvhen diffusion is neglected.
Heree = 2 x 1075 leads to an irregular spatiotemporal dynamics.

thee = 0 case. The solution appears already for very semmdémonstrating that the system
is sensitive to weak diffusion.

In case of quasiperiodic local behaviour, instead of a finite number of discrete branches,
a continuous set of solutions exists filling the torus in the phase space. Thus the discontinuity
present in the case without diffusion is easily removed by an arbitrarily weak diffusion leading
to almost coherent quasiperiodic oscillations of the whole system.

When the parameters correspond to chaotic local dynamics, diffusion tends to form
intermittent correlated regions of finite extent in space and time (figure 93.ig\sicreased,
the local dynamics becomes completely regular with a frozen irregular distribution in space
which certainly depends on the initial distribution.

5. Conclusion

High peaks can appear in periodic solutions of chemical reaction equations in which the
constituents areomogeneouslgnixed tracer gases of the atmosphere. However, depending
on the motion of the fluid the mixing need not be homogeneous at all, and the question arises
how these solutions will then change.

In this paper we investigate this question for a simple model, the brusselator with
pointlike source in a one-vortex flow. Simple as the model appears, it demonstrates the strong
modifications occurring as soon as we move away from the homogeneous situation. One
observes this when computing the concentration distribution along the (closed) streamline in
which the source is located. As a function of time we detect solutions that are very similar
to those of the homogeneous case. This happens as long as thePefittk flow is small.
Furthermore, we find solutions with peried’, moreover quasiperiodic and chaotic ones. All
these solutions, (except that with periddlare infinitely degenerate and therefore depend on
the initial distribution. Even if the latter is smooth, the distributions can asymptotically have
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Figure 9. Stroboscopic spatiotemporal plots of concentratidior s = 0.8, = 6.0andl’ = 1.89.

These parameters correspond to a chaotic local dynamics when diffusion is not considered. We
assumed that the initial concentrations are randomly distributed in a small inter@0(01] for

both constituents. The diffusion coefficienteis= 0 (@), ¢ = 1.5 x 107° (b) ande = 2 x 10°°

(c), respectively.

an arbitrary (uneven) number of discontinuities, in the chaotic casdl enales

In such situations diffusion is a singular perturbation and switching on arbitrary small
diffusion along the streamline has two effects: first after a tim@f) it leads to a ‘coarse
graining’ of the distribution on a space scate,/e wheree is the strength of the diffusion.
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Second, on a timescate ev?/v< (8 = O(1)), it removes all discontinuities but one for
solutions which have (without diffusion) period’2 This shows that the solutions depend
sensitively on/e. For parameters that lead (without diffusion) to solutions of higher period,
quasiperiodic or chaotic time dependence the coupling of the local dynamics leads to more
complex and irregular spatio-temporal patterns. All these solutions have nothing in common
with the case of homogeneous mixing we started with.

Although this one-dimensional model is far from being a realistic representation of the
chemistry and transport in the atmosphere, it shows that even a trivial non-turbulent flow
interacting with a simple but time-dependent chemical dynamics of just two reactants can lead
to a complex irregular behaviour of the concentration fields.
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Appendix A

In this appendix we derive the properties of equation (1) for our model assuming that without
diffusion the solution has al2period in the moving system. We have

dc= f(c, X, 1) +ed’c (A.1)
with the periodic boundary conditions
cx,t)y=c(x+11) dzrc(x,t) = dze(x +1,1). (A.2)

This equation holds true in the frame moving with a veloeity 1/T.
The use ofe can be awkward since the components have to be positive. Therefore we
write

n = ¢+ const (A.3)
and get the equation fat
on=g(n,x, 1)+ ea)_fn with g(n, x,t) = f(const +n, x, 1) (A.4)
and the periodic boundary conditions

nx,t) =nx+11) oxn(x,t) = dzn(x +1,1). (A.5)

Without diffusion n moves exponentially fast to its asymptotic limit® having the
properties
n9x, ) =nQG, r+27)
and either
nQG, 1) =n¢ —xT) (A.6)
or
n9@, ) =nOT +1 —3T)
n© and its properties also remain important if diffusion is switched on gjroaa be expanded
aroundn©@.

To understand the physics of equation (A.4) with the conditions of equation (A.6) we
construct a simple model for the functigrin three steps.
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Step 1. We introduce a very simplae©
n? (%, 1) = Refad™"/T-9)} nQ (%, 1) = Im {ad™ "/ T} (A7)

and we represent the two-dimensional vectors by complex numbers.

Step 2. We use the ansatz

in(t/T—%)

nx,t)==¢€ -m(x,t) (A.8)

and get the partial differential equation far
am =g —imedgm — w2em + e&?m with
g =e TR @W/T=9 3 1) — (in)T)m. (A.9)

The termsied;m andr2em are of higher order in/e and will be left out for simplicity. The
boundary conditions of equation (A.5) are replaced by

mE, 1) = —m(E+1,1) dem(x, 1) = —dm(E +1,1). (A.10)

Step 3. We construct a simplg. Because of equation (A.7) and (A8)% can only take two
values,

m® = +a (A.11)

anda can be chosen to be real and positive. Wheis in the neighbourhood 0&© g can be
expanded and we obtain
g=—al,t)(im—a)+--- or g=—al,)(im+a)+---. (A.12)

For a(x, t) we insert a real positive constantt. The linear approximatiof isf of course
incorrect ifm is not close tata. A nonlinearity is simply added by the prescription

. —a(m —a) for |m—al <|m+a|
&= —a(m +a) else.

Thus we get the partial differential equation:

. s . . —a(m —a) for Rem >0
dm =g +edzm with g = (A.13)
—a(m +a) for Rem < 0.
Boundary conditions are given by equation (A.10). The connection betweenm given
by equation (A.8) and the real and imaginary part @fre the components af.

A.1. Properties of the solutions of equation (A.13)

(I) Diffusion switched off, i.ee = 0.
m consists asymptotically of an uneven number of jumps with valuesThe number of
jumps can be arbitrarily high and is determined exclusively by the initial distribution of
m.

(I) Diffusion switched on, i.ee > O.

T « could be a complex constant as well as long as the real part is positive.
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(1) Isolated jump.
We assume that there is a constant velogifyw with which the jump is moving.
Transforming to new coordinateswith

X =y+Jewt (A.14)
and assuming that the jump occurgat 0 the two equations are to be solved:

0= —a(m +a)+\/gw8ym+68y2m y<O

0= —a(m—a)+\/2w8ym+68}2,m y > 0.
Because of the boundary conditions for the isolated jump

m(—o0) = —a m(o0) = a

the solution is

m-y) =& —a  y = (-w+Varu?)  y<0 (A.15)
5 A.15
m) =BV ra  p=d) (-w-Vaaru?)  y>0

with the boundary condition
m_(0) = m+(0) m’ (0) = m/,(0).
Because of equation (A.13) there is the further condition
Re{m_(0)} = 0.

ThereforeA = a andB = —a, m is real and the condition fay is obtained from

ay = —ay
which means
w = 0.

(2) Two interacting jumps isolated from the rest.

Letthe—+ jump be left, the + jump be right. Both jumps move because of an interaction
with each other and we assume that the interaction changes the speed and shape of the jumps
only slowly (the distance 2 between them decreases of course).

First, we rescale to avoid thedependence

X
Ve
Next we transform into a coordinate system moving with-tiejump, whose position is at 0.
We obtain

£E= (A.16)

& =n+wgt (A.17)
and

0= —a(m_+a)+wed,m_+ Bgzm, n<0 (A18)

0= —a(m: —a) +wydym+ + d;m. n > 0.

Boundary conditions are

m_(—00) = —a m_(0) = m+(0) m”_(0) = m/,(0). (A.19)
Furthermore, the presence of the fump is taken care of by the condition

m,(€q) =0 (A.20)
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and we have the constraint (cf equation (A.13))
Re{m_(0)} = 0. (A.21)
Then we get with an exponential ansatz (cf equation (A.15)
m_(n) = A€’ —a n<0
m+(n) = Be"+Ce" +a 0<n<é,.
Again,m can be chosen to be real and the conditions equations (A.19)—(A.21) yield
A—a=B+C+a Ay =By +Cy

(A.22)

0= Bye'% + Cye'é A—a=0. (A.23)
From these equations we ge} (neglecting all termsvZ and higher)
Wy x 2 ae Ve (A.24)
which is correct for
Vag; > 1. (A.25)
From scaling arguments we infer that equation (A.25) gives the correct order of magnitude
for Ja&; < 1.

One can also use equation (A.24) to prove that there is no stationary state. If it were
all the equations would be exact and in particular equation (A.24) which would in turn be a
contradiction.

Now we compute the lifetimeg of a jump which is in the original coordinates

1
n= E(ezﬁwﬁ — 1. (A.26)

(3) n interacting jumps.

To treat this problem we take into account the interaction between nearest neighbours
only (the interaction between next nearest neighbours is exponentially small compared to the
interaction between the nearest neighbours). Then it is sufficient to look into the problem
of one jump between two other jumps. We approximate the interaction again by boundary
conditions and obtain two conditions of the form equation (A.20). Performing an analogous
computation with the same approximations we obtain for the velocity of the jump

wy A 24/ a(e7BVHRIVE _ g2/ /Ve) (A.27)

Here 2, (2x,_) is the distance to the right (left) jump. From this result we conclude that all
states with more than one jump will be unstable since two neighbouring jumps will annihilate
each other.
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