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Abstract. Reaction equations of homogeneously mixed pollutants in the atmosphere can lead
to non-stationary periodic solutions. It is important to know how these solutions are modified
under the influence of the atmospheric currents. We investigate this question in a very simple one-
dimensional model: the reactions are modelled by the brusselator and the currents are represented
by a uniform stream with periodic boundary conditions. In the limit of strong currents we again find
the homogeneous solutions whereas for weaker currents complicated spatial and temporal patterns
emerge. The role of diffusion is also investigated.

1. Introduction

The concentrations of chemical species (e.g. pollutants) in the atmosphere depend on the
atmospheric currents and the chemical reactions. Neglecting cloud formation, humidity, ice
etc, the governing equation for the concentration fields can be written

∂

∂t
ci = fi(c1 . . . cn,x, t)− v(x, t) · ∇ci + εi1ci i = 1, . . . , n (1)

where the functionsfi describe the chemical reactions and sources, the second term on the
right-hand side represents the advection by the atmospheric currentsv(x, t) and the last one
is the diffusion term.

If the mixing is strong and the chemical components are homogeneously distributed the
concentrationsci are determined by the chemical reactions alone and the equations reduce to
ordinary reaction rate equations. The solutions of these reaction equations need not approach
a time-independent limit. They can develop achemical dynamicswell known from model
reaction schemes and laboratory experiments [1]. Periodic fluctuations can also arise in
atmospheric chemistry as has recently been shown in a model system containing six pollutants
and two pollutant sources [2–4]. A particular feature was the result that concentrations may
change by an order of magnitude within a few days.

If the chemical components are not homogeneously distributed thetransport dynamics
needs also to be considered. In the atmosphere the transport of chemical species is dominated
by advection and molecular diffusivities are very small. But the advecting velocity field can
be decomposed into large-scale winds and a strongly fluctuating small-scale component. The
effect of the latter component on the chemical fields is often described by a ‘turbulent’ diffusion
[5–8] with diffusivity parameters much higher than the molecular ones.
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In this context two questions arise: first, how do the concentrations develop if the transport
dynamics is not negligible? We show here, for a very simple model, that the transport dynamics
can lead to very rich new phenomena. Second, what is the effect of the diffusion term? We
will show in the same model that if there is achemical dynamicsthen the diffusion is a
singular perturbation. It has its own timescales that depend sensitively on the strength of the
diffusion term.

Previous work has investigated the interaction between fluid transport and chemical
dynamics for reactions likeA + B → C or A + B → 2B in two-dimensional flows [9–12].
Here we consider a simple one-dimensional flow with a set of reactions that allows for time-
dependent chemical dynamics in the homogeneous case. The model is described in section 2,
in section 3 we discuss its properties without diffusion and in section 4 we concentrate on the
role of diffusion. The conclusion ends the paper.

2. The model

The chemical dynamics of our model is described by the well known Brusselator reaction
scheme [13]

X→ E X→ Y 2X + Y → 3X (2)

where the pollutantX partly decays into an inert substanceE, partly into a second constituentY
that autocatalytically reacts withX again. For maintaining the chemical reactions a ‘pollutant
source’ is required pouring out pollutants of typeX.

In the absence of transport and if the pollutant source is spatially uniform the concentrations
c1 (of X) andc2 (of Y ) are described by the chemical rate equations†

ċX = S + c2
XcY − (1 +b)cX ċY = bcX − c2

XcY (3)

whereS is the source strength andb represents the ratio between the decay rate ofX into
pollutantY and the decay rate ofX into inert substances. Depending on the parameters the
concentrations converge to a fixed point or limit cycle in the homogeneous case. Typically
periodic solutions with sharp peaks occur. They are analogous to those obtained in the
simplified tropospheric chemistry model of [2].

To investigate the interaction between the chemical and transport dynamics we consider a
point source producing pollutantX that is transported away by a steady flow. If the diffusion
is weak the reactions will be mostly concentrated around the streamline containing the point
source. Assuming a closed streamline (e.g. around an isolated vortex) we consider a very
simple one-dimensional transport dynamics given by a uniform stream on the unit interval and
periodic boundary conditions. (By this we neglect the effects arising due to the curvature of
the steramline.) Thus, we obtain the following combined reaction transport equations:

∂

∂t
cX = Sδ(x) + c2

XcY − (1 +b)cX − v ∂
∂x
cX + ε

∂2

∂x2
cX

∂

∂t
cY = bcX − c2

XcY − v
∂

∂x
cY + ε

∂2

∂x2
cY

(4)

where the source is located atx = 0 and we assumed that the diffusivitiesε are equal for
the two constituents‡. Apart from the diffusion constant the equations contain three control
parameters, the decay ratiob, the source strengthS and the velocityv.

† The reaction rates and further down the length of the streamline have been scaled to unity by proper rescaling of
length, time and concentrations.
‡ In a wind field molecular diffusion is negligible compared with turbulent diffusion. In that caseε is equal for all
constituents. In our paper smallε means small turbulent diffusion.
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Figure 1. Curves corresponding to the Hopf bifurcation in the parameter planes–b for different
values of the periodT .

3. Properties of the model without diffusion

Let us now assume that diffusion is weak and it can be neglected (ε = 0). In this case
it is convenient to introduce a reference frame co-moving with the flow using a coordinate
transformationx̄ = x − vtmod 1. In the moving frame equation (4) reduces to an infinite
set of uncoupled pairs of ordinary differential equations, each pair describing the chemical
dynamics in individual fluid parcels labelled by their initial coordinatex0 at timet = 0:

ċ1 = s
∞∑

n=−∞
δ(x0 + vt + n) + c2

1c2 − (1 +b)c1

ċ2 = bc1− c2
1c2.

(5)

In the moving frame the point source is moving with a velocityv and the above equation
describes a periodically driven (kicked) chemical dynamics with a driving periodT ≡ 1/v.
Note that the phase of the driving depends on the parameterx0 (0 < x0 < 1) being different
for each fluid parcel.

The periodically driven brusselator has been investigated in different contexts considering
a constant plus a sinusoidal or delta-function time dependence of the source [14–16]. In the
T → 0 limit the normal brusselator is recovered, i.e. very frequent injections correspond to
an almost uniform source. In this limit the parameter planeS versusb can be divided into two
regions (figure 1): for higher source strengths the concentrations converge to the fixed point
c∗1 = S, c∗2 = b/S. AsS is decreased, the fixed point becomes unstable and a Hopf bifurcation
occurs along the curveS = √b + 1 forming the boundary between the two regions. Below
this curve the system converges to a limit cycle, i.e. the concentrations oscillate periodically
(figure 2).

When the periodT is non-zero but still small (0< T � 1), a periodic pulsation with
periodT of the concentrations appears. Moreover, the initially two-dimensional phase space
(c1 − c2) becomes three dimensional by including the cyclic variablet/T mod 1 and the
attractors can be conveniently represented on a stroboscopic section defined by a fixed value
of the driving phase.

The dimensionality of the attractor increases as well, and the original fixed point turns to
a limit cycle with periodT that is a fixed point of the stroboscopic map. Similarly, the original
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Figure 2. Constant in time and periodic behaviour of the concentrationsc1 andc2 for the unforced
brusselator (T = 0). The parameters ares = 2.5, b = 3.0 ands = 1.0, b = 3.0, respectively.

limit cycle becomes either (i) a torus corresponding to a quasiperiodic time dependence of the
concentrations with one of the periods equal toT (figure 3) or (ii) a periodic orbit with period
nT/m, (n,m = 1, 2, . . .).

This is expected from the characteristic features of periodically driven oscillators. There
exist resonant regions for driving frequencies close to their natural frequency multiplied by a
rational number. These resonant regions appear here in the parameter space below the Hopf
bifurcation curve and are analogous to the Arnold tongues of the so-called ‘circle map’ [17]
(figures 4 and 5). Another effect of the periodic forcing term is that the Hopf bifurcation
curve moves to smaller values ofS asT increases (figure 1). Since the dynamics is given by a
set of two non-autonomous ordinary differential equations chaotic behaviour is also possible
for certain values of the parameters leading to a strange attractor in the stroboscopic section
(figure 6).

Next we consider thespatial distributionof the concentrations in the case of different
temporal dynamics. The spatial dependence can be reconstructed from the temporal dynamics
by taking into account the phase shift of the driving for different fluid parcels and the possibly
different initial conditions.

(α) Periodic time dependence with periodT .
This behaviour occurs for largeT (i.e. small velocities of the flow). In this case the

concentrations oscillate and the phase of the oscillations is given by the phase of the driving
t/T mod 1. Thus the final state is independent of the initial conditions. In the moving frame
the only difference in the periodic time dependence at different points of the flow is a time lag
x̄T

c(x̄, t) = c(t + x̄T ; x0 = 0) (6)

that corresponds to a non-uniform but time-independent distribution in the standing frame
c(x, t) = c(xT ; x0 = 0).

(β) Periodic oscillations with periodnT .
This behaviour is characteristic to the resonant regions. The concentrations at each time

can take one of then possible values depending on the initial conditions

c(x̄, t) ∈ {c(t + iT + x̄T ; x0 = 0)} i = 0, . . . , n− 1 (7)
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Figure 3. Quasiperiodic time dependence of the concentrationsc1 andc2 (a), and stroboscopic
section (b) for s = 1.0, b = 3.0 andT = 1.0.

where the value of integeri is a function of the coordinatēx due to its dependence on the initial
concentrationsc(x̄, t = 0). The boundary between the basins of attraction of then branches
of the solution is a twisted (M̈obius-type) surface in the phase space, so that the basin of
attraction of branchi becomes the basin of attraction of branchi + 1 modn after one periodT .
Thus any smooth initial condition must have at least one intersection with this surface. At this
point the concentrations converge to two different branches and a discontinuity appears in the
spatial dependence of the concentrations (figure 7). Note that this jump is not a consequence
of the delta function in equation (5) but due to geometrical constraints. An initially random
distribution can lead to a completely staggered distribution whose envelopes are then branches
of the solution. The jumps stay at fixed positions in the moving reference frame.

(γ ) Quasiperiodic time dependence.
This is present below the Hopf bifurcation curve between the resonances and dominates

for smallT because with increasingT the region below the Hopf curve shrinks and at the same
time the resonant islands grow in size. This case corresponds to a motion on a torus in the phase
space. The dynamics can be characterized by two cyclic angle-like variables, one of them is
the phase of the driving and the other one depends smoothly on the initial concentrations:
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Figure 4. Stroboscopic plot ofc2 as function ofT for s = 1.9 andb = 7.7. The Hopf bifurcation
occurs aroundT = 1.03 and there are resonant windows inside the quasiperiodic region labelled
by the ratio of the two periods.

Figure 5. Periodic (blank) and quasiperiodic (grey) regions in a section of the parameter space
for T = 1.0. The behaviour of the system was identified by calculating the leading Lyapunov
exponent which is smaller than−0.0025 for the blank region.

c(x̄, t) = c(t + τ(x̄); x0 = 0). Therefore, an initially smooth distribution remains smooth inx̄

for all times (except at the initial position of the source where the time lag of the source term
by T leads to a discontinuity).

(δ) Chaotic time dependence.
In this case the time dependence is very sensitive to the initial conditions and thus the

distribution becomes irregular on each scale regardless how smooth the initial distribution
may have been (figure 9(a)).

4. The role of diffusion

Without diffusion the final distributions (except those with the periodT ) have infinite
degeneracy due to an arbitrary uneven† number of jumps. Therefore diffusion is asingular

† We do not count the strong increase of thec1 concentration due to theδ-function shape as a jump.
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Figure 6. Chaotic time dependence of the concentrationsc1 andc2 and the stroboscopic section
of the strange attractor. The parameters ares = 1.2, b = 7.0 andT = 1.36.

perturbation that has significant consequences for the system even for smallε. (For the
following computations we used the Crank–Nicholson scheme combined with operator
splitting [18].)

We discuss first the simplest nontrivial case of equation (7), which occurs for period 2T .
We denote with a−+ (+−) jump an ‘upward’ (‘downward’) steep increase (decrease) of the
concentration, but exclude the strong increase ofc1 at the location of the source. If the diffusion
is small enough we can treat a jump as isolated (for a very long time). We find that due to
diffusion the jumps move with a drift velocity relative to the flow, (cf figure 7). Scaling and
symmetry arguments suggest that this should be proportional to a higher power of

√
ε and in

fact we find numerically a dependence∝ ε. The important point, however, is that, averaged
over 2T , each isolated jump moves with thesamedrift velocity. (In fact after timeT a−+
jump becomes a +− jump and vice versa.) What we expect then as the essential ingredient
of equation (7) is thatf tries to enforce solutions with a period of 2T . In appendix A we
have derived a simple functionf that has just this propertyand makes it possible to treat
equation (7) analytically. We then find: first, for times

T1 = O(1) (8)
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(a) (b)

Figure 7. Spatiotemporal plot of the concentrationsc1 (a) andc2 (b) along the streamlines in the
co-moving frame represented on a greyscale, so that concentrations increase from black to white.
The simulation was started with both concentrations equal to zero and the initial position of the
source is atx = 0.2. Parameters ares = 1.0 b = 5.0 andT = 1.7 In case (a) ε = 0 and a
non-moving discontinuity is present atx = 0.2. When diffusion is switched onε = 0.001 the
discontinuity becomes rounded and moves (to the left in this case) along the streamline.

all jumps with distance ofO(
√
ε) vanish. During this time the effect of the diffusion is just a

coarse graining. Second, over a period of about

T2 = eβ/
√
ε β = O(1) (9)

all other jumps are affected. The diffusion gradually removes the degeneracies, until a final
state emerges that has no jumps at all, besides the generic one that cannot be removed. In
our model this state has global stability. Numerically we find the same phenomena for the
brusselator, cf figure 7(b).

The effects described here occur quite independently of how smallε is. On the other hand
T2 depends exponentially on 1/

√
ε. When a further perturbation has to be added acting on a

timescaleτ we expect quite different situations depending on whetherT2 > τ orT2 < τ . This
means that the effect of such a perturbation dependssensitivelyon

√
ε.

We expect even more complicated properties of the concentrations having higher periods
(in absence of diffusion). There are two reasons: (i) if the period isnT the system has at any
locationn− 1 choices for the height of a jump, (ii) the jumps are no longer equivalent but are
separated in classes and only jumps within thesameclass change into each other and therefore
move with the same mean drift velocityvd . Indeed, the effect of diffusion on the periodic
solution can in some cases be very significant, leading to a complicated irregular behaviour of
the system in space and time. As can be seen from figure 8, inside the chaotic concentration field
coherent regions with regular periodic time dependence appear and disappear continuously.
This kind of spatiotemporal intermittency has been observed in different extended systems
[19, 20]. If the initial distribution is smooth first at least the intrinsic jump appears as described
above. The pertubation of the periodic solution around the discontinuity leads to a chaotic
time dependence which due to the diffusive coupling spreads over the whole system. Such
behaviour can be observed for parameters which lie in the vicinity of the chaotic regimes of
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Figure 8. Stroboscopic spatiotemporal plot of concentrationc2 for parameterss = 0.8, b = 6.0
andT = 1.85, corresponding to a periodic behaviour with period 3T when diffusion is neglected.
Hereε = 2× 10−5 leads to an irregular spatiotemporal dynamics.

theε = 0 case. The solution appears already for very smallε demonstrating that the system
is sensitive to weak diffusion.

In case of quasiperiodic local behaviour, instead of a finite number of discrete branches,
a continuous set of solutions exists filling the torus in the phase space. Thus the discontinuity
present in the case without diffusion is easily removed by an arbitrarily weak diffusion leading
to almost coherent quasiperiodic oscillations of the whole system.

When the parameters correspond to chaotic local dynamics, diffusion tends to form
intermittent correlated regions of finite extent in space and time (figure 9). Asε is increased,
the local dynamics becomes completely regular with a frozen irregular distribution in space
which certainly depends on the initial distribution.

5. Conclusion

High peaks can appear in periodic solutions of chemical reaction equations in which the
constituents arehomogeneouslymixed tracer gases of the atmosphere. However, depending
on the motion of the fluid the mixing need not be homogeneous at all, and the question arises
how these solutions will then change.

In this paper we investigate this question for a simple model, the brusselator with
pointlike source in a one-vortex flow. Simple as the model appears, it demonstrates the strong
modifications occurring as soon as we move away from the homogeneous situation. One
observes this when computing the concentration distribution along the (closed) streamline in
which the source is located. As a function of time we detect solutions that are very similar
to those of the homogeneous case. This happens as long as the periodT of the flow is small.
Furthermore, we find solutions with periodnT , moreover quasiperiodic and chaotic ones. All
these solutions, (except that with periodT ) are infinitely degenerate and therefore depend on
the initial distribution. Even if the latter is smooth, the distributions can asymptotically have
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(a) (b)

(c)

Figure 9. Stroboscopic spatiotemporal plots of concentrationc2 for s = 0.8,b = 6.0 andT = 1.89.
These parameters correspond to a chaotic local dynamics when diffusion is not considered. We
assumed that the initial concentrations are randomly distributed in a small interval [0, 0.0001] for
both constituents. The diffusion coefficient isε = 0 (a), ε = 1.5× 10−5 (b) andε = 2× 10−5

(c), respectively.

an arbitrary (uneven) number of discontinuities, in the chaotic case onall scales.
In such situations diffusion is a singular perturbation and switching on arbitrary small

diffusion along the streamline has two effects: first after a time ofO(1) it leads to a ‘coarse
graining’ of the distribution on a space scale∝ √ε whereε is the strength of the diffusion.
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Second, on a timescale∝ e
√
β/
√
ε , (β = O(1)), it removes all discontinuities but one for

solutions which have (without diffusion) period 2T . This shows that the solutions depend
sensitively on

√
ε. For parameters that lead (without diffusion) to solutions of higher period,

quasiperiodic or chaotic time dependence the coupling of the local dynamics leads to more
complex and irregular spatio-temporal patterns. All these solutions have nothing in common
with the case of homogeneous mixing we started with.

Although this one-dimensional model is far from being a realistic representation of the
chemistry and transport in the atmosphere, it shows that even a trivial non-turbulent flow
interacting with a simple but time-dependent chemical dynamics of just two reactants can lead
to a complex irregular behaviour of the concentration fields.
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Appendix A

In this appendix we derive the properties of equation (1) for our model assuming that without
diffusion the solution has a 2T period in the moving system. We have

∂tc = f(c, x̄, t) + ε∂2
x̄c (A.1)

with the periodic boundary conditions

c(x̄, t) = c(x̄ + 1, t) ∂x̄c(x̄, t) = ∂x̄c(x̄ + 1, t). (A.2)

This equation holds true in the frame moving with a velocityv = 1/T .
The use ofc can be awkward since the components have to be positive. Therefore we

write

n = c + const (A.3)

and get the equation forn

∂tn = g(n, x̄, t) + ε∂2
x̄n with g(n, x̄, t) = f(const +n, x̄, t) (A.4)

and the periodic boundary conditions

n(x̄, t) = n(x̄ + 1, t) ∂x̄n(x̄, t) = ∂x̄n(x̄ + 1, t). (A.5)

Without diffusionn moves exponentially fast to its asymptotic limitn(0) having the
properties

n(0)(x̄, t) = n(0)(x̄, t + 2T )

and either
n(0)(x̄, t) = n(0)(t − x̄T )
or
n(0)(x̄, t) = n(0)(T + t − x̄T )

(A.6)

n(0) and its properties also remain important if diffusion is switched on sinceg can be expanded
aroundn(0).

To understand the physics of equation (A.4) with the conditions of equation (A.6) we
construct a simple model for the functiong in three steps.
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Step 1. We introduce a very simplen(0)

n
(0)
1 (x̄, t) = Re{aeiπ(t/T−x̄)} n

(0)
2 (x̄, t) = Im {aeiπ(t/T−x̄)} (A.7)

and we represent the two-dimensional vectors by complex numbers.

Step 2. We use the ansatz

n(x̄, t) = eiπ(t/T−x̄) ·m(x̄, t) (A.8)

and get the partial differential equation form

∂tm = g̃ − iπε∂x̄m− π2εm + ε∂2
x̄m with

g̃ = e−iπ(t/T−x̄)g(eiπ(t/T−x̄)m, x̄, t)− (iπ/T )m. (A.9)

The terms iπε∂x̄m andπ2εm are of higher order in
√
ε and will be left out for simplicity. The

boundary conditions of equation (A.5) are replaced by

m(x̄, t) = −m(x̄ + 1, t) ∂x̄m(x̄, t) = −∂x̄m(x̄ + 1, t). (A.10)

Step 3. We construct a simplẽg. Because of equation (A.7) and (A.8)m(0) can only take two
values,

m(0) = ±a (A.11)

anda can be chosen to be real and positive. Whenm is in the neighbourhood ofm(0) g̃ can be
expanded and we obtain

g̃ = −α(x̄, t)(m− a) + · · · or g̃ = −α(x̄, t)(m + a) + · · · . (A.12)

For α(x̄, t) we insert a real positive constant†. The linear approximation ofg̃ is of course
incorrect ifm is not close to±a. A nonlinearity is simply added by the prescription

g̃ =
{
−α(m− a) for |m− a| < |m + a|
−α(m + a) else.

Thus we get the partial differential equation:

∂tm = g̃ + ε∂2
x̄m with g̃ =

{
−α(m− a) for Rem > 0

−α(m + a) for Rem 6 0.
(A.13)

Boundary conditions are given by equation (A.10). The connection between n andm is given
by equation (A.8) and the real and imaginary part ofn are the components ofn.

A.1. Properties of the solutions of equation (A.13)

(I) Diffusion switched off, i.e.ε = 0.
m consists asymptotically of an uneven number of jumps with values±a. The number of
jumps can be arbitrarily high and is determined exclusively by the initial distribution of
m.

(II) Diffusion switched on, i.e.ε > 0.

† α could be a complex constant as well as long as the real part is positive.
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(1) Isolated jump.
We assume that there is a constant velocity

√
εw with which the jump is moving.

Transforming to new coordinatesy with

x̄ = y +
√
εwt (A.14)

and assuming that the jump occurs aty = 0 the two equations are to be solved:

0= −α(m + a) +
√
εw∂ym + ε∂2

ym y < 0

0= −α(m− a) +
√
εw∂ym + ε∂2

ym y > 0.

Because of the boundary conditions for the isolated jump

m(−∞) = −a m(∞) = a
the solution is

m−(y) = Aeγy/
√
ε − a γ = ( 1

2)
(
−w +

√
4α +w2

)
y 6 0

m+(y) = Beγ̃ y/
√
ε + a γ̃ = ( 1

2)
(
−w −

√
4α +w2

)
y > 0

(A.15)

with the boundary condition

m−(0) = m+(0) m′−(0) = m′+(0).
Because of equation (A.13) there is the further condition

Re{m−(0)} = 0.

ThereforeA = a andB = −a,m is real and the condition forw is obtained from

aγ = −aγ̃
which means

w = 0.

(2) Two interacting jumps isolated from the rest.
Let the−+ jump be left, the +− jump be right. Both jumps move because of an interaction

with each other and we assume that the interaction changes the speed and shape of the jumps
only slowly (the distance 2xd between them decreases of course).

First, we rescale to avoid theε dependence

ξ = x̄√
ε
. (A.16)

Next we transform into a coordinate system moving with the−+ jump, whose position is at 0.
We obtain

ξ = η +wdt (A.17)

and

0= −α(m− + a) +wd∂ηm− + ∂2
ηm− η 6 0

0= −α(m+ − a) +wd∂ηm+ + ∂2
ηm+ η > 0.

(A.18)

Boundary conditions are

m−(−∞) = −a m−(0) = m+(0) m′−(0) = m′+(0). (A.19)

Furthermore, the presence of the +− jump is taken care of by the condition

m′+(ξd) = 0 (A.20)
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and we have the constraint (cf equation (A.13))

Re{m−(0)} = 0. (A.21)

Then we get with an exponential ansatz (cf equation (A.15)

m−(η) = Aeγ η − a η 6 0
m+(η) = Beγ̃ η +Ceγ η + a 06 η 6 ξd .

(A.22)

Again,m can be chosen to be real and the conditions equations (A.19)–(A.21) yield

A− a = B +C + a Aγ = Bγ̃ +Cγ
0= Bγ̃eγ̃ ξd +Cγeγ ξd A− a = 0.

(A.23)

From these equations we getwd (neglecting all termsw2
d and higher)

wd ≈ 2
√
αe−2

√
αξd (A.24)

which is correct for
√
αξd > 1. (A.25)

From scaling arguments we infer that equation (A.25) gives the correct order of magnitude
for
√
αξd < 1.

One can also use equation (A.24) to prove that there is no stationary state. If it were
all the equations would be exact and in particular equation (A.24) which would in turn be a
contradiction.

Now we compute the lifetimetl of a jump which is in the original coordinates

tl = 1

4α
(e2
√
αxd/
√
ε − 1). (A.26)

(3) n interacting jumps.
To treat this problem we take into account the interaction between nearest neighbours

only (the interaction between next nearest neighbours is exponentially small compared to the
interaction between the nearest neighbours). Then it is sufficient to look into the problem
of one jump between two other jumps. We approximate the interaction again by boundary
conditions and obtain two conditions of the form equation (A.20). Performing an analogous
computation with the same approximations we obtain for the velocity of the jump

wd ≈ 2
√
α(e−2

√
αxd+/

√
ε − e−2

√
αxd−/

√
ε). (A.27)

Here 2xd+ (2xd−) is the distance to the right (left) jump. From this result we conclude that all
states with more than one jump will be unstable since two neighbouring jumps will annihilate
each other.
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